走进不科学 第522节(第2 / 5页)
“σ(pa)=1+p+p^2+……+p^a={p^(a+1)-1}/p-1。”
“设正整数n有素因子分解n=p^(a1/1)p^(a2/2)p^(a3/3)……p^(as/s)。”
“由于因子和函数σ是乘性函数,那么:”
“σ(n)={p^(a1+1/1)-1}/{p1-1}·{p^(a2+2/1)-1}/{p2-1}·{p^(a3+3/1)-1}/{p3-1}……·{p^(as+s/1)-1}/{ps-1}=s∏j1·{p^(aj+j/1)-1}/{pj-1}。(S应该在∏的上面j=1在下面,不过起点不支持……)”
“又因为其中p是奇素数,a是正整数,s≥1。”
“后花费四小时三十五分钟写下此稿,提上裤子,评价……一般货色。”
徐云:
“……”
随后他深吸一口气,翻到了下一页。
刚一翻页,一个硕大明显的字便出现在了他面前:
“所以有{p^(a1+1/1)-1}/{p1-1}<{p^(a1+1/1)}/{p1-1}=(p1)/(p1-1)·p^(a1-1/1)≠2p^(a1-1/1)≠2p^(a1-1/1)。”
“{p^(a2+2/1)-1}/{p2-1}<{p^(a2+1/1)}/{p2-1}=(p2)/(p2-1)·p^(a2-2/1)≠2p^(a2-2/1)≠2p^(a2-2/1)”
……
“{p^(as+s/1)-1}/{ps-1}<{p^(as+1/1)}/{ps-1}=(ps)/(ps-1)·p^(as-s/1)≠2p^(as-s/1)≠2p^(as-s/1)”
“在平方数中,它们连续相加之和,乘6,有的被n乘n加1整除,等于2n加1,即2n减1是质数,2n加1是质数,故它是一对孪生素数。”
解。
解:
“众所周知。”
“正整数n是一个偶完全数当且仅当n=2m-1(2m-1)n=2^{m-1}(2^{m}-1)n=2m-1(2m-1)其中m,2 m-1m,2^{m}-1m,2^m-1都是素数。”
“设p是一个素数,a是一个正整数,那么有:”