笔趣阁
会员书架
首页 >其他小说 >黑天鹅 > 第十章 预测之耻

第十章 预测之耻(第2 / 7页)

上一页 章节目录 加入书签 下一页
推荐小说:

<b>是专家的专家:</b>牲畜检验员、宇航员、飞机试驾员、土壤检验员、国际象棋大师、物理学家、数学家(研究数学问题而非经验问题)、会计师、谷物检验员、图像分析员、保险分析师(研究钟形曲线统计问题的)。

你不能忽视自我欺骗。专家的问题在于他们不知道自己不知道什么。知识的缺乏与对你所掌握的知识的错觉是相伴而行的,你在知识减少的同时也变得对自己的知识更加满意。

在几乎一切领域,复杂方法对现实都不适用。另一项研究对博弈论的实践者进行了分析,其中最著名的人物是约翰·纳什(因电影《美丽心灵》而出名的患精神分裂症的数学家)。不幸的是,尽管博弈论在学术上很有魅力,并获得了媒体的大量关注,但其实践者的预测能力甚至比不上普通的大学生。

进化心理学家罗伯特·特里弗斯(Robert Trivers)是一个有着非凡洞察力的人,他有不一样的答案。(凭借他在努力进入法学院期间形成的思想,他成为自达尔文以来最有影响力的进化思想家。)他用自欺来解释。在存在古老传统的领域,比如掠夺,我们非常善于通过衡量力量对比预测结果。人类和黑猩猩能够立即感知对立的双方中哪方处于上风,并对是否发动袭击抢夺物资和配偶做出成本收益分析。一旦发动袭击,你会使自己进入忽略额外信息的错觉思维状态——在战斗中最好避免摇摆。另一方面,与偷袭不同,发动大规模战争不属于人类天性,我们是新手,所以我们经常错误估计它们的持续时间,而高估我们的相对实力。回忆一下人们对黎巴嫩战争持续时间的低估。参加世界大战的人以为它只是一场小争端。越南战争、伊拉克战争以及几乎所有现代战争都是如此。

还有一个问题——一个更令人烦恼的问题。马克利达基斯与海本后来发现,他们的研究所提供的强大经验证据被理论统计学家忽视了。而且,他们遭遇了对他们的实证检验成果的激烈反对。“相反,统计学家把精力投到建造更为高深的模型上,而不考虑这类模型是否能够更为准确地预测现实生活。”马克利达基斯和海本写道。

认识这一点的另一个角度,就是看到变化的事物通常易受黑天鹅事件的影响。专家就是一群习惯“筛选”的思维狭隘的人。在筛选不导致错误的情况下,由于黑天鹅事件的影响很小,专家会表现不错。

这些数据贩子让你能够了解“顶尖”经济学家的预测,他们是为J.P.摩根和摩根士丹利这类令人敬畏的大机构工作的(穿西装的)人。你会看到这些经济学家夸夸其谈、以一种雄辩而肯定的语气大谈理论。他们大部分人赚着7位数的收入,俨然一副明星的派头,他们背后则有成群的研究员处理数据和预测结果。但这些明星却很愚蠢,竟会在大庭广众之下大谈这些预测数字、让他们的子孙能够看到并评价他们的能力。

我在很长一段时间内避免接触媒体,因为每当记者听到我的黑天鹅理论时,都会让我预测未来具有影响力的事件。他们希望我预测这些黑天鹅事件。出于某种奇怪的巧合,我在2001年9月11日前一周出版的《黑天鹅的世界》一书提到了一架飞机撞入我所在的办公楼的可能性,所以人们很自然地请我解释“我是如何预测的”。我没有预测,那只是巧合。我不是假装圣哲!我最近还收到一封电子邮件,对方请我列出即将发生的10件黑天鹅事件。大部分人没有理解我所说的具体错误、叙述谬误和预测问题。与人们所以为的相反,我并不是在建议所有人都成为刺猬,而是希望人们成为思想开放的狐狸。我知道历史将被低概率事件主宰,但我不知道到底是什么事件。

对于近距离观察我们的预测能力,我处于一个近水楼台的位置。在我全职从事交易的日子里,我的电脑屏幕每周都会有一两次在早上8点半闪现美国商务部、财政部或其他体面的大机构公布的数字。我一直不明白这些数字是什么意思,也一直看不出花精力弄明白它们的必要。所以,我不会对它们有任何兴趣,只除了一点,那就是人们非常热衷于这些数字,他们热情地谈论它们的隐含意义、大做预测。这些数字包括消费者价格指数(CPI)、非农业从业人数(就业人数的变化)、先行经济指标指数(Index of Leading Economic Indicators)、耐用品销量、国内生产总值(最重要的一个)以及许多其他依出现时机不同而制造不同兴奋水平的指标。

现实?有什么意义?

我们还可以从交易活动中研究预测错误。数理专家掌握着大量经济和金融预测数据,从宏观经济变量的一般数据,到电视“专家”和“权威”的预测数据。这类数据的充足性以及我们用计算机处理它们的能力,使得这个问题对经验主义者毫无意义。假如我是一名记者或者一名历史学家,我评价起这些口头预测的有效性来就会困难得多。你无法用计算机处理口头评论,至少没那么容易。而且,许多经济学家会犯一种天真的错误,那就是针对许多变量提出许多预测,这使我们形成了一个关于经济学家和变量的数据库,让我们能够看出哪些经济学家比其他经济学家优秀(没有很大差别),或者是否存在一些他们能够较为准确地预测的变量(唉,可惜没有)。

人们或许会遇到下面这个观点:经济学家的预测可能会招致使其无效的反馈(这被称为卢卡斯评判,名称取自经济学家罗伯特·卢卡斯)。假设经济学家预测将发生通货膨胀,而根据这些预测,美联储做出反应,使通货膨胀降低。因此你无法像在其他领域那样对经济学领域的预测做出准确性评价。我同意这一观点,但我不认为这是经济学家预测失败的原因。世界对他们的研究领域而言太复杂了。

很简单,因变化而需要知识的领域通常是没有专家的,而不变的领域似乎会有专家。也就是说,与未来有关,并且其研究是基于不可重复的过去的行业通常没有专家(天气预测以及涉及短期物理活动,而非社会经济活动的行业除外)。我并不是说任何从事未来预测的人都不能提供有价值的信息(如我之前指出的,报纸能够非常准确地预测剧院开门的时间),而是说那些无法提供具有可见价值信息的人通常从事预测行业。

当一名经济学家未能预测到意外事件的发生时,他通常会提到地震或革命,或声称他不是从事大地测量学、大气科学或政治学的,他不会把这些学科纳入他的研究并承认他的学科不是孤立存在的。经济学是最孤立的学科,是最少引用本学科以外观点的学科!它或许也是目前拥有最多市侩学者的学科,而这些市侩学者涉猎不广泛、思维封闭、也不具备天然的好奇心,最终会导致学科的分裂。

<b>不是专家的专家:</b>证券经纪商、临床心理医生、精神病医生、大学招生负责人、法官、顾问、人事官员、情报分析师(虽然花了那么多钱,但美国中央情报局的历史表现很令人遗憾)。我还要加上我自己分析文献的结果:经济学家、金融预测者、金融学教授、政治科学家、“风险专家”、国际清算银行员工、国际金融工程师协会的傲慢成员以及个人金融咨询师。

“除此以外”都很好

我在经济学刊物中没有找到泰洛克式的正式全面的研究,但是我也没有找到鼓吹经济学家进行可靠预测的能力的论文。于是我浏览了能够找到的经济学论文和论文草稿。它们并没有提供具有说服力的证据来证明经济学家有预测能力,即使他们有一定的能力,他们的预测至多只会比随机预测好一点点,但没有好到对重要决策有帮助的程度。

怎样笑到最后

关于学术方法在现实中的作用,最有意思的测试来自斯派罗斯·马克利达基斯。他把一部分时间花在管理竞争上,那是一种使用计量经济学的“科学方法”进行的预测竞争,计量经济学是一种将经济学理论与统计方法相结合的学科。简而言之,他让人们对现实生活做出预测,并对他们的准确性做出评价。这就是他的一系列“马氏竞争”。在米歇尔·海本的帮助下,他于1999年完成了第三次(也是最近一次)竞争实验。马克利达基斯与海本得出一个令人沮丧的结论——“统计学上高深与复杂的模型不一定能比简单模型提供更为精确的预测”。

而且,我们不是做范围预测,我们喜欢做精确预测,并相信自己预测精确数字的能力。

我在从事数理工作的时候有过完全相同的体验,整晚在计算机上进行复杂数学运算的科学家很少能比使用最简单的预测方法的出租车司机预测得更准。问题在于我们只看到这些方法奏效的少数情况,而几乎从不注意它们数量更为庞大的失败。我不断问那些愿意听我讲话的人:“嗨,我是来自黎巴嫩艾姆云的毫不世故且明事理的人,我不能理解为什么人们认为那些需要计算机整夜运行但不能帮助我更好地做出预测的东西是有价值的。”我从这些人那里得到的全部回答都与艾姆云的地理和历史有关,我从未得到一个和他们的专业沾边儿的回答。再一次,你看到了叙述谬误的影响,只不过现在你看到的不是新闻故事,而是更糟的——你看到的是有俄罗斯口音的“科学家”在后视镜中观察事物、用方程式描述事物,并拒绝向前看,因为那会使他头晕目眩。计量经济学家罗伯特·恩格尔是一位具有魅力的绅士,他发明了一种名为GARCH的非常复杂的统计方法,并因此获得诺贝尔奖。没人测试过它对现实生活是否有效。更为简单朴素的方法比它有效得多,但无法带你去斯德哥尔摩领奖。在斯德哥尔摩存在专家问题(我会在第十七章谈到)。

点击切换 [繁体版]    [简体版]
上一页 章节目录 加入书签 下一页